Identification of nonlinear discrete-time systems using raised-cosine radial basis function networks

نویسندگان

  • Ahmad F. Al-Ajlouni
  • Robert J. Schilling
  • S. L. Harris
چکیده

An effective technique for identifying nonlinear discrete-time systems using raisedcosine radial basis function (RBF) networks is presented. Raised-cosine RBF networks are bounded-input bounded-output stable systems, and the network output is a continuously differentiable function of the past input and the past output. The evaluation speed of an n-dimensional raised-cosine RBF network is high because, at each discrete time, at most 2 RBF terms are nonzero and contribute to the output. As a consequence, raised-cosine RBF networks can be used to identify relatively high-order nonlinear discrete-time systems. Unlike the most commonly used RBFs, the raised-cosine RBF satisfies a constant interpolation property. This makes raised-cosine RBF highly suitable for identifying nonlinear systems that undergo saturation effects. In addition, for the important special case of a linear discrete-time system, a first-order raised-cosine RBF network is exact on the domain over which it is defined, and it is minimal in terms of the number of distinct parameters that must be stored. Several examples, including both physical systems and benchmark systems, are used to illustrate that raised-cosine RBF networks are highly effective in identifying nonlinear discrete-time systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

Fingerprint Classification in DCT Domain using RBF Neural Networks

Fingerprint classification is a fundamental method for the identification of people. Fingerprint classification is based on the immutability and the individuality of fingerprint. Because of the large collections of fingerprints and recent advances in computer technology, there has been increasing interest in automatic classification of fingerprint. In this paper, an efficient method for fingerp...

متن کامل

Approximation of nonlinear systems with radial basis function neural networks

A technique for approximating a continuous function of n variables with a radial basis function (RBF) neural network is presented. The method uses an n-dimensional raised-cosine type of RBF that is smooth, yet has compact support. The RBF network coefficients are low-order polynomial functions of the input. A simple computational procedure is presented which significantly reduces the network tr...

متن کامل

Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)

This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...

متن کامل

Adaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay

In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control  method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Systems Science

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2004